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ABSTRACT 
Hardwarelsoftware (HW-SW) partitioning is a key problem in the 
codesign of embedded systems, studied extensively in the past. One 
major open challenge for traditional partitioning approaches - as 
we move to more complex and heterogeneous SOCs -is  the lack 
of efficient exploration of the large space of possible HWISW con- 
figurations, coupled with the inability to efficiently scale up with 
larger problem sizes. In this paper. we make two contributions for 
HW-SW partitioning of applications represented as procedural call- 
graphs: I )  we prove that during partitioning, the execution time 
metric for moving a vertex needs to be updated only for the imme- 
diate neighbours of the vertex, rather than for all ancestors along 
paths to the root vertex; consequently, we observe faster run-times 
for move-based partitioning algorithms such as Simulated Anneal- 
ing (SA), allowing call graphs with thousands of vertices to be pro- 
cessed in less than a second, and 2) we devise a new cost function 
for SA that allows frequent discovery of better partitioning solu- 
tions by searching spaces overlooked by traditional SA cost func- 
tions. We present experimental results on a very large design space, 
where several thousand configurations are explored in minutes as 
compared to several hours or days using a traditional SA formula- 
tion. Furthermore. our approach is frequently able to locate better 
design points with over I O  % improvement in application execu- 
tion time compared to the solutions generated by a Kernighan-Lin 
partitioning algorithm starting with an all-SW panitioninp. 
Categories and Subject Descriptors: B.6.3 [C.O] 
General Terms: Algorithms 
Keywords: HW-SW partitioning, dynamic cost function 

1. INTRODUCTION 
Partitioning is an important problem in all aspects of design. 

HW-SW (hardware-software) partitioning, i.e. the decision to par- 
tition an application onto hardware (HW) and software (SW) exe- 
cution units, is possibly the most critical decision in HW-SW code- 
sign. The effectiveness of a HW-SW design in terms of system exe- 
cution time, area, power consumption, etc. are primarily influenced 
by partitioning decisions. In this paper, we consider the problem 
of minimizing execution time of an application for a system with 
hard area constraints. We consider an application specified as a call 
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graph DAG (directed acyclic graph) extracted from a sequential ap- 
plication written in 'C' or any other procedural language, where the 
graph vertices represent functions, and the graph edges represent 
function calls or accesses between functions. 

In this paper, we make two contributions to H W S W  partitioning. 
First we prove that for a callgraph representation, when a vertex is 
moved to a different partition, it is only necessary to update the 
execution time change metric 161 for its immediate parents and im- 
mediate children instead of all ancestors along the path to the root. 
This in general allows for a more efficient application of move- 
based algorithms like simulated annealing (SA). 

Second, we present a cost function for simulated annealing to 
search regions of the solution space often not thoroughly explored 
by traditional cost functions. This enables us to frequently generate 
more efficient design points. 

Our two contributions result in a vely fast simulated annealing 
(SA) implementation that generates partitionings such that the ap- 
plication execution times are often better by over 10% compared to 
a KLFM (Kernighan-LinFiduccia-Matheyes) algorithm for HW- 
SW partitioning for graphs ranging from 20 vertices to 1000 ver- 
tices. Equally importantly, graphs with a thousand vertices are pro- 
cessed in much less than a second. 

2. RELATED WORK 
HW-SW partitioning is an extensively studied "hard  problem 

with a plethora of approaches- dynamic programming [ I  I ] ,  genetic 
algorithms [3], greedy heuristics [IO], to name a few. Most of the 
initial work, [ I  I ] ,  [12], focussed on the problem of meeting tim- 
ing constraints with a secondary goal of minimizing the amount 
of hardware. Subsequently there has been a significant amount 
of work on optimizing performance under area constraints, [l]. 
[Z], [6]. With the goal of searching a larger design space, tech- 
niques such as simulated annealing (SA) have been applied to HW- 
SW partitioning using fairly simple cost functions. While a lot 
of initial work such as [ 121 was based exclusively on SA, recent 
approaches commonly measure their quality against a SA imple- 
mentation. For example, [I]  compares simulated annealing with a 
knowledge-based approach, and 121 compares SA with tabu search. 

It is well-known that SA requires careful attention in formulating 
a cost function that allows the search to "hill-climb over subopti- 
mal solutions. However, much of the published work in HW-SW 
partitioning have not studied in detail the SA cost functions that 
permit a wider exploration of the search space. As an example, in 
[Z], [7], the SA formulation considers only valid solutions satis- 
fying constraints, thus restricting the ability of SA to "hill-climb" 
over invalid solutions to reach a valid better solution. 

The two previous pieces of work in HW-SW partitioning that are 
most directly related to our work are [6] ,  [4]. Our model for HW- 
SW partitioning is based on [6], a well-known adaptation of the 
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H W '  
Figure 1: Target architec- 
turn Figure 2: Simple callgraph 
KL paradigm for HW-SW partitioning: our efforts in improving 
the quality of the cost function are closely related to 141. 

Our partitioning granularity is similar to [6], effectively that of 
a loop-procedure call-graph: each partitioning object represents a 
function and the DAG edges are annotated with callcounts. [6] 
introduced the notion of execution time change metric for a DAG, 
and updating the metric potentially by evaluation of ancestors along 
the path to the root. The linear cost function in [6] ignores the effect 
of HW area as long as the area constraint is satisfied. 

[4] provides an in-depth discussion of cost functions and the no- 
tion of improving the results obtained from a simple linear cost 
function by dynamically changing the weights of the variables. We 
differ from [4] in the following ways: [4] addresses the problem of 
choosing a suitable granularity for HW-SW partitioning that min- 
imizes area while meeting timing constraints; since we consider 
the problem of minimizing execution time while satisfying HW 
area constraints, the proposed cost function in [41 needs significant 
adaptation for our problem. In [4], the dynamic weighting tech- 
nique was applied towards the secondary objective of minimizing 
HW area once the primary objective, the timing constraint. was al- 
most satisfied. We however, apply a dynamic weighting factor to 
our cost functions in various regions of the search space to better 
guide the search. Last but not the least, since their primary focus 
was on the granularity selection problem, there was no quantitative 
comparison of their approach with other algorithms- we have com- 
pared our approach to the KLFM approach with an extensive set of 
test cases and demonstrated the effectiveness of our approach. 
3. PROBLEM DESCRIPTION 

We consider the problem of HW-SW partitioning of an applica- 
tion specified as a callgraph extracted from a sequential program 
written in C, or, any other procedural language. For the purpose 
of illustrating the basic partitioning formulation, we assume a sim- 
ple target architecture that contains one SW processor and one HW 
unit connected by a system bus, as shown in Figure 1. I We assume 
mutually exclusive operation of the two units, i.e. the two units may 
not he computing concurrently. We also assume that the HW unit 
does not have dynamic RTR (run-time reconfiguration) capability. 

The problem considered in this paper is to partition the appli- 
cation into HW and SW components such that the execution time 
of the application is minimized while simultaneously satisfying the 
hard area constraints of the HW unit. Essentially, given a software 
program, we want to map as many functions as possible to the tixed 
HW unit to improve program performance (thereby maximally uti- 
lizing available HW resources in a computing platform). 
Preliminaries 

The input to the partitioning algorithm is a directed acyclic graph 
(DAG) representing a call-graph, CG = (V, E). V is the set of graph 
vertices and E the set of edges. Each partitioning object come- 
sponding to a vertex vi € V is essentially a function that can be 
mapped to HW or SW. Each edge ei, E E represents a call or an 

'Of course, our formulation can be extended to more contemporary 
SoC's containing multiple HW and SW components where we have 
a tined area constraint and want to maximize performance 

access to the callee function vj from the caller function vi. The 
SW execution times and callcounts are obtained from profiling the 
application on the SW processor. In this model, the HW execution 
time and the HW area for the functions are estimated from synthesis 
of the functions on the given HW unit. The simple model for HW 
area estimates assumes that the area of a cluster of components can 
be obtained by summing the individual HW areas. Communica- 
tion time estimates are made by simply dividing the volume of data 
transferred by the bus speed. Since the execution time model i s  
sequential, bus contention is assumed to play an insignificant role. 

Each edge et, has 2 weights (cci,, cti,). cci, represents the call 
count, i.e. the number of times function Y .  iq accessed by its parent 
vi. ctij represents the HW-SW communication time, i.e. if vi is 
mapped to SW and its child v, is mapped to HW (or vice-versa), ctij 
represents the time taken to transfer data between the SW and the 
HW unit for each call. (Note: we assume that vertices mapped onto 
the same computing unit have negligible communication latency) 

Each vertex vj has 3 weights (I:. I:. hi). t: is the execution time 
of the function corresponding to vi on the SW unit (processor). $ 
and hi are the execution time, and, area requirement, respectively 
for the function on the HW unit. Note that in this work we do 
not consider compiler (synthesis) optimizations leading to multiple 
HW implementations with different area and timing characteristics. 

This denotes that in partitioning P, vertex "0 is mapped to SW, V I  

is mapped to HW, " 2  is mapped to SW, etc. Two key attributes of 
a partitioning are ( T p , H p ) .  T p  denotes the execution time of the 
application under the partitioning P, HP denotes the aggregate area 
of all components mapped to hardware under partitioning P. 

4. EFFICIENT COMPUTATION OF EXE- 

J. 

A partitioning of the vertices can be represented as P = {f,, 4: +..... ). 

CUTION TIME CHANGE METRIC 
Given a sequential execution paradigm and a call-graph specifi- 

cation, the execution time of a vertex vi is computed as the sum of 
its self-execution time and the execution time of its children. The 
execution time for vj additionally includes HW-SW communication 
time for each child of vi mapped to a different partition. Thus, if 
T p  denotes the execution time for vertex vi under a partitioning P, 

T p  = ti + zjLl (cci, * T j ) + z j &  (cci, rcti,) 
where ti is either 1; or 1: depending on whether vi is currently 

mapped to HW or SW in the partitioning P. Ci represents the set 
of all children of vertex vi,  e'' represents the set of all children 
of vi mapped to a different partition. Note that if vg corresponds to 
main in a 'C' program, T: equals the complete program execution 
time when partitioning P specifies whether vertices are mapped to 

For a partitioning P, the execution rime chunge metric A:, for a 
vertex vi. is defined as the change in execution time when the vertex 
vj is moved to a different partition. That is. A: denotes the change 
in TU' when vertex vi is mapped to a different partition. 

From the definition of the execution time change metric, it would 
appear that when a vertex is moved to a different partition, the met- 
ric values for all its ancestors would need to be updated. Indeed, in 
previous work, 161, the change equations assumed it was necessary 
to update ancestors all the way to the root. In the simple example 
shown in Figure 2, the execution time of the program (same as the 
execution time for vertex v g )  obviously depends on the execution 
time of its descendant "2. Let us assume all vertices were initially 
in SW. If we move the vertex vz to HW, the execution time changes 
due to HW-SW communication on the edges (v3 ,v2 ) ,  ( q r v 2 )  and 
change in execution time for vertex q. It would appear that any 
execution time related metric for the vertices vg,  vg, "4. would need 
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to be updated when this move is made. This, however, is not the 
case, as proved in the following lemma: 

Lemma: For any two vertices vr and vy, if a vertex v, is 
moved to a different partition, Ay needs to be updated only if 
there is an edge ( x , y )  or, (y ,x ) .  This update requires changing 
exactly one term in A>,, i.e this update can be done in O( 1) time 
per edge. 

PROOF. We define the aggregate call Counf, CCi for a vertex vi 
in the following recursive manner: CCi = cp, (ccji * CCj). Pi 
represents the set of all parent vertices (all functions it is called 
from) for the vertex vi. CCo, i.e the aggregate call caunt for the 
root vertex, is 1. 

CCi represents the exact number of times the function corre- 
sponding to vertex vj is called along all possible paths from the 
root. Now, if we recursively expand T:, an unrolled representation 
for T: is: 

T; = Z!EL(cci * t i )+C( i , j j  E "(s; cc, * = t i j ) .  

Sp. is the Kronecker delta function defined for edge ( i ,  j) in the 
partxioning P - it takes a value of I if the vertex vi and its child 
vertex v j  are mapped to different partitions, 0 otherwise. The first 
expression has exactly one term per vertex and the second expres- 
sion has exactly one term per edge. If we now evaluate T,'.. the 
new execution time when vertex v, is moved to generate the new 
partitioning Px, 

TP' _ -C~~;"J(cci * t i )  +t$ *.cc~+C(i,Jl~[~-~)(s; * cc, * 
C t i j ) + X ( i . J )  *CCi*Cfij) 

where X is the set of all edges adjacent to vertex v,, induding its 
immediate parents and immediate children. The Kronecker delta 
values can change only for edges adjacent to v,. We can now eval- 
uate A: = T,'. - T: corresponding to the change in execution time 
when vertex vr is moved. 

A' I -  - CC, t (6 - tx)+c'i5J) '((S: - s.) *CCi * cri,) 

We can similarly compute A; for any other vertex vy as 
q = c c y * ( r ~ - f y ) + C l i , J ) ~ ~ ( ( ~ ~  -~;)*cc,tct~~) - E q n ( ~ )  

Next, we evaluate.the execution time T,". corresponding 10 the 
new partitioning when vertex v, is moved, followed by vertex vy 
being moved. 

P T,". = C!l,"'-"y'(CCi * t i )  + f? * CC, + ry' '* CC, + 
c l j , j j c ( E - X - V ( g ;  * cc, * cl,,)+ ~ l ~ ~ i ~ ~ ~ X - l ~ ~ ~ l l ( ~ p ~  * cc, * 

a j ) +  

Zl i . j jEy( s :  * C C , * ~ ~ , ~ )  
where [x ,y ]  denotes either ( x , y )  or ( y , x ) .  Note that from our 

n u s ,  we can compute A: = T,". - T,'. as 
problem definition we can not have both ( x , y ) ,  and, ( y , x ) .  

8 

A$ = ~ c , ~ ( t ~ - t ? ) - ( ( i , J j = I x , y l )  ( S ! T ~ C C , ~ ~ ~ , ~ ) -  ' I  

C l i , j ) ~ ( ~ - l x . y l ) ( ~ . ~ ~ ~ ~ * ~ ~ ~ ~ ) +  c ( : . j j  ~ ~ ( j j p ,  *ccjeCtjj) 
' I  ' I  

= cc, * (t? - t y ) + c ( i , j ) ~ [ y - l . J . I ) ( ( s P ~  ' I  -s;) *cc, * c t i j ) +  

[ ~ i , J ) = [ x J . l ) ( ( 6 ~  - j j : )*CCj*ct i j ) .  Eqn (B) 
6i, depends only on whether vertices vi and v j  are in the same 

partition, or in different partitions. That is, S: = fip, if (i, j) + 
[x ,y ] .  So, comparing Equations (A) and (B), we have 

~ p - q = l ( i , J ) = [ h ~ l j  ((SF -sP,)-(~~-sP.))*cc,*~~, ' I  ' I  ' I  

Thus we have proved that when vertex v, is moved to a different 
partition, Ay needs to tie updated only if there is an edge [x ,y ] .  Also, 
the update involves changing exactly one term in Ay. 

Our experimental results will show that this result allows us to 
have very fast run-times for move-based algorithms like SA. 

. . 
U 
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5. SIMULATED ANNEALING 
- _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ - -  

Algorithm SA 
while (NOTl?QUlLlBRIUM) 

For i = 1 fo I,  /I iterations at current temperature 
P =random perturbation of the current configuration, P 
COSTA = COSTfP') - COSTfP) 
if  COST^ < 0) 
else, 

endfor 
UPDATE T () (from annealing schedule) 
EVALUATEl?QUILlBRlUM.CONDITION() 

P = P 
generate random number x E [0,1] 

if ( x  < e - C O W ~ )  p = P 

endwhile 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
The above SA algorithm represents a typical formulation of sim- 

ulated annealing for problems in combinatorial optimization, as ini- 
tially proposed in [15]. The SA algorithm essentially tries to find an 
optimal solution to a "hard" problem such as partitioning, by con- 
ceptually representing the problem as a physical system with a huge 
number of particles at an initial temperature T. The system is ran- 
domly perturbed and the temperature is successively decremented 
allowing the system to reach statistical equilibrium at each temper- 
ature step: a state of minimal energy of the system corresponds to 
an optimal solution to the "hard" problem. Thus, key parameters in 
any formulation are the initial temperature T. the cooling (anneal- 
ing) schedule mandating how the temperature is decremented, and 
the number of iterations at each temperature step. 

In HW-SW partitioning, perturbation is commonly defined as a 
move of a single vertex from HW to SW and vice versa, though ex- 
periments have been conducted with perturbations involving mul- 
tiple moves [71. A typical cost function is a linear combination of 
normalized metrics [ I ] ,  [4], [2]. For our problem, the two metrics 
we need to consider are the execution time and the HW area. 

For a SA approach to HW-SW partitioning, execution time is 
primarily driven by the computation cost of the cost function. A 
cost of O ( E )  to compute the execution time of a partitioning by a 
traversal of the call-graph for every new configuration is too expen- 
sive for graphs with 100s  10 1000's of vertices. For our problem, 
we can simply use the execution time change metric defined earlier 
to efficiently update the execution time for a new partitioning by 
updating only the immediate neighbours of a vertex. Since the av- 
erage indegree and outdegree of a call graph is expected to be a low 
number, the average cost of a move is very low and enables the SA 
algorithm to do a very rapid evaluation of the search space. Nota- 
tionally, for a partitioning P with attributes ( T p ,  H P ) ,  a HW to SW 
move of vertex vi generates a new partitioning PI with attributes 
(TP+A~,HP-hi),andsimilarlyforaSW toHWmove. 
5.1 Cost function for simulated annealing 

Often, a statically weighted linear combination of metrics is used 
as a cost function for SA algorithms in an attempt to overcome 
its well-known limitations in handling multiobjective problems. In 
this section we first provide the intuition for developing cost func- 
tions that explore points often not considered in traditional cost 
functions, and then describe the cost function. 

SA uses randomization to overcome local minima by accepting 
suboptimal moves with some probability: our goal is to guide the 
algorithm towards potentially more interesting design points by ex- 
plicitly forcing the algorithm to accept apparently bad moves when 
far away from the objective. Simultaneously, we force the algo- 
rithm to probabilistically reject some apparently good moves that 
would always be accepted by most heuristics. As an example, when 



Figure 3: Solution space Figure 4 Neighbourhood move 

we are far away from our optimization goal, we would prefer not to 
always accept a move that improves execution time only slightly at 
the cost of a significant amount of hardware area. 

Given our view of SA as a sequence of moves each of which is 
blindly accepted, or probabilistically rejected depending upon its 
degree of suboptimality, we define a cost function on the param- 
eters that change for a given move. i.e. execution time, and HW 
area. The change in execution time for a move, AT. is the same as 
execurion time change metric for the moved vertex. The chdnge in 
area, AA, is positive, hi for a SW-HW move, and negative, -hi for a 
HW-SW move of vertex v i .  

In Figure 3, each possible partitioning P is represented by a point 
in the two-dimensional plane with x and y co-ordinates. The x-axis 
represents the execution time corresponding to the given panition- 
ing, while the y-axis represents the aggregate HW area. The vertical 
lines T,i, and zna represent the execution times for an all HW and 
an all SW solution respectively. The horizontal line A, represents 
the area constraint. To solve our problem of minimizing execution 
time under a hard area constraint, we effectively need to search for 
a point as close as possible to the upper left corner of the hounded 
rectangular region A. 

A move of a single component from SW to HW i n  partitioning P 
is expected to lead to a new panitioning with improved (less) exe- 
cution time and more HW area, such as PI in Figure 4. Similarly. Pz 
corresponds to a HW to SW move with less HW area. More gener- 
ally, when a single component in partitioning Pis  moved between 
panitions, the new partitioning Pj lies in one of the four quadrants 
centred at P. A partitioning PI with improved execution time and 
additional HW area lies in the quadrant (-f ,+h),  represented in 
Figure 4 as (-,+). Similarly, a partitioning Pz with improved ex- 
ecution time and reduced HW area lies in the quadrant ( 4 - h ) .  
represented as (-,-),and so on forpanitionings 4, P4. 

We next consider the evaluation of a cost function (A * AT + B * 
AA) at the point P, corresponding to a random move generated by 
the SA algorithm. A and B are weights that include the normal- 
ization factors required to be able to combine the two cost function 
components which are in completely different units. This cos1 func- 
tion is a simple straight line through P splitting the region around 
P into 2 equal parts. In traditional cost functions like [6] ,  where 
the HW area component of the cost function is ignored as long as 
the area constraint is satisfied, essentially every random move that 
improves the execution time component of the cost function is ac- 
cepted with a probability of I .  An example of such moves are Pi, 
Pz inFigure4,i.eallmoveslyinginquadrants ( - t , + h ) ,  (-r,-h), 
represented in the figure as (-+), (--). 

If we now specifically consider a partitioning P in Figure 3 such 
that few components have been mapped io HW, and the execution 
time is hence expected to be closer to the SW execution time, our 
goal is to bias the move acceptance such that: 

(a) we provide additional weightage to some moves like P, in 

Figure 5: Cost functions 

Figure 5 ,  that cause the execution time to deteriorate slightly but in 
exchange free up a large amount of HW area. Such moves would 
be prohabilistically rejected by traditional cost functions that ignore 
the HW area component, but we force their acceptance by explic- 
itly introducing a cost function (A * A T  + B * AA),  A >> B in the 
quadrant (+r , -h ) .  

(b) we reduce weightage on some moves like Pv in Figure 5 ,  that 
improve execution time slightly but consume an additional large 
amount of HW area. This is based on a similar reasoning of en- 
abling the cost function to explore more combinatorial possibilities. 

(c) we reduce weightage on some moves like Pz in Figure 5 that 
improve the execution time slightly but free up a large amount of 
HW area. We are now actually attempting to guide the search away 
from making moves that do not appear to be headed towards our 
desired solution space. Intuitively, for a panitioning where there 
are relatively few HW components, the HW-SW communication 
cost can potentially play a dominant role. For moves like Pr, free- 
ing up a large amount of HW could potentially result in a slight 
improvement in execution time due to significant reduction in HW- 
SW communication. Blindly accepting such moves translates to 
attempting to reduce communication cost between some vertex v, 
mapped to HW and its neighbours in SW by moving hack v, to SW. 
When we are far from our desired solution space, we would instead 
prefer to encourage the algorithm to reduce communication cost by 
adding more of its neighbours to HW. 

We next consider the notion of dynamically weighting the com- 
ponents of the cost function as suggested in [41. This is a powerful 
technique which essentially changes the slope of the line through 
P, thus dynamically changing the search region. In [4], this tech- 
nique was applied towards the secondary objective of minimizing 
HW area once the primary objective, the timing constraint was al- 
most satisfied. We however, apply a dynamic weighting factor to 
our cost functions in various regions in an attempt to better guide 
the search. Conceptually we dynamically weight the time compo- 
nent with the distance from the boundary in our attempt to guide 
the search more towards the top left corner of the bounded region 
A in Figure 3. 

Among other key issues considered in our cost function are the 
impact of boundary violations, i.e when a move leads us to a pani- 
tioning with HW area greater than the constraint. We penalize all 
such moves with a factor proponional IO the extent of the boundary 
violation. We can clearly achieve this with a high weightage on 
the area component , i.e., a function (A * AT + B  * (Areane%, -Ac)) ,  
where B >>> A. Similarly when a move leads from an invalid 
partitioning to a valid partitioning, we reward it with a factor pro- 
portional to the extent that it is inside the boundary. 

Another important aspect of our cost function is the notion of 
a threshold. When we are very close to the boundary, we need 
a cost function that has only a slight bias towards the component 
representing execution time. In our cost function, the time compo- 
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nent is dynamically weighted by the distance from the boundary- 
we have observed experimentally that close to the boundary. desir- 
able weights for the time component in this region are even lower 
than what our cost function provides. Thus, we needed to add the 
notion of a threshold region very close to the boundary where we 
explicitly assign a lower weightage to the time component of the 
cost function. 

Based on the above discussion, our cost function is algorithmi- 
cally described as follows: 
$(current partiritioning is a valid solution) 

$(move causes boundary violorion) 
Significant penalry proportional to area violorion (i)  

else $(current partitioning is v e q  near ro boundary) 
Slightly reduced weightage on time (as compared to (iii)) 

else 
$(move in quadrant -) 

else 
( A 1 * A ~ + B ~ * A ~ ) , " k e r e A 1  > > E 1  (iii) 

( A ~ * A ~ + B z * A A ) ,  ( iv) 
else // (current pamririoning lies outside bounday) 

a mirror image of the above ser of rules. 
In Equations (iii) and (iv), the terms A I  and A? are dynamically 

weighted by the distance from the boundary. The HW area com- 
ponent of the cost function is normalized with respect to the area- 
Constraint. A more detailed description of the actual values imple- 
menting rules (i), (iii), etc, are in [IS]. 
5.2 Key parameters in SA 

In order to obtain quality results, we tuned the algorithm SA by 
using the following parameter settings. For decrementing the tem- 
perature, we chose the popular geometric cooling schedule, where 
the new.temperature is given by T,,, = a* T .  a is a constant that 
typically varies between 0.9 - 0.99. After a lot of experiments, we 
fixed a at 0.96. 

The stopping criterion is an important parameter, often formu- 
lated as the maximum number of moves that did not produce any 
improvement in the solution. In previous work, this has typically 
been a fixed number. We observed that this criterion has a strong 
correlation with problem size and hence, we scale the criterion from 
5000 moves without improvement for graphs with SO vertices, to 
15000 moves without improvement for graphs with a 1000 vertices. 

Our experiments indicated that there was only a weak correlation 
between the initial temperature and the problem size. So, we keot 
the initial temperature T fixed at 5000. 

Another key parameter that we have often found missing in pre- 
vious work on HW-SW partitioning is the inner loop in Algorirhm 
SA where there are multiple iterations at each temperature. We have 
observed experimentally that the solution quality degrades when 
there is a single iteration at each temperature step as compared to 
the approach of applying multiple iterations at each temperature 
step. 
6. EXPERIMENTS 

As shown in Figure 6,  we explored a very large space of possi- 
ble designs by generating graphs which varied the following set of 
parameters: ( I )  varying indegree and outdegree (2) widely varying 
number of vertices (3) varying CCRs (computation-to-communication 
ratio). (4) varying area constraints. 

We augmented the parameterizable graph generator TGFF 1131 
to generate the graphs used in our experiments. An example of an 
augmentation was one that enahled TGFF to generate HW execu- 
tion times for vertices such that the HW execution time of a vertex 
was faster than the SW execution time by a number between 3 and 
8 times. 

Let S = {20,50, 100,2001500~1000} denote the range of graph 

Figure 6 Set of experiments 
sizes generated where size corresponds approximately to the num- 
her of vertices in the graph. As an example, for a graph size SO, 
TGFF generates a graph with between 48 to 52 vertices. We chose 
S to observe how our algorithm worked on a large range of graph 
sizes. Le tCR= {0.1,0.3,0.5:0.7} denotethe set of C C R s  
(communication-to-computation ratio). The notion of CCR is very 
important in partitioning and scheduling algorithms that consider 
communication between taskslfunctions. A CCR of 0.1 means 
that on an average, communication between taskslfunctions in a 
call-graphhask graph requires IIlOth the execution times of the 
functionsltasks in  the graph. As CCR increases, communication 
starts playing a more important role in coarse-grain partitioning and 
scheduling algorithms. 

We generated data for over 12000 individual runs of the SA with 
the following configurations from Figure 6.  
Step 1 The maximum indegree and outdegree of a vertex were 
set to 4 each, which are reasonably representative of realistic call- 
graphs. Corresponding to these fixed parameters, we generated a 
set of graphs with the following characteristics. Each run of SA 
chose a graph size from S = {20,50,100,200,500~ 1000); for each 
graph size wechose CCR from CR = {0.1,0.3,0.5,0.7} Thus. we 
effectively generated a set of graphs /SI X ICRI. Note that in  the 
tables that follow, graphs with size 50 are denoted as v50, graphs 
with size 100 are denoted as v100,  etc. 
Step 2 For each of the graphs generated in Step 1. we varied the 
area constraint A ,  as a percentage of the aggregate area needed to 
map all the vertices to HW. On one extreme, we set A,  such that 
very few partitioning objects would fit into HW, while at the other 
extreme, a significant proportion of the objects would fit into HW. 
Step 3 We repeated the above two steps with a maximum indegree 
and outdegree of (i) 4 and LO (ii) 2 and 5 (iii) 5 and 7. 

Thus, the experimental data presented represents information col- 
lected from over 12000 experiments. 

To measure the quality of results, we simply record the program 
execution times computed by the SA algorithm with our new cost 
function, and the KLFM algorithm as in [6]. In prior work, how- 
ever, experiments to measure the quality of a partitioning algorithm 
have often been formulated by forcing constraint violations and at- 
tempting to integrate the degree of violations into some unitless 
number, as in L61, [ I ] .  

For a given design configuration, if TM is the execution time of 
the panitioned application computed by the KLFM algorithm, and 
T,, is the execution time of the partitioned application computed 
by the SA algorithm, our quality measure is the performance dif- 
ference given by: (Tkl - Tso)/Tkl * 100 
Thus, a positive number, say, 5%. implies that the KLFM algorithm 
computed an execution time better than SA by 5%. while a nega- 

126 



Graph BESTDEV 
type (%I 

22.9% 6.7% 5.75% .OX 05 1 %I 1 118.2% I 5.7% I 15.47% I .I I :07 I 
WORSTDEV AVG SA KFM 

(%I (%) rt rt 

"200 
v500 
vl000 

in a SA implementation that generates partitionings such that the 
execution times are often better by 10 % over a KLFM algorithm 
for graphs ranging from 20 vertices to 1000 vertices. Equally im- 
portantly, the algorithm execution times are very fast- graphs with 
1000 vertices are processed in less than half a second. We believe 
that such a fast SA formulation makes it feasible to fine-tune the 
function further in a real design environment to generate partition- 
ing solutions with a quality significantly better than that obtained 
from traditional KLFM implementations. 

One important limitation of this work is a simple additive HW 
area estimation model that does not consider resource sharing- this 
could potentially be overcome in a future implementation with an 
approach like [XI. 

In the future, we plan to extend these concepts to systems where 
HW and SW execute concurrently, i.e. consider scheduling issues 
as part of the problem formulation. Also, based on our learning 
experience of individually tuning a lot of different parameters in 
SA, we would like to extend the cost function concepts developed 

-13.9% 4.3% -3.74% .I9 .I1 
-16% 6.8% -4.53% .25 .48 

-13.7% 6.4% -4.17% .36 1.6 

here to algorithms with fewer tunable parameters. 
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