
Efficient Search Space Exploration for W SW Partitioningt

Sudarshan Banerjee Nikil Dutt
Center for Embedded Computer Systems
University of California, Irvine, CA, USA

banerjeeQics.uci.edu duttQics.uci.edu

ABSTRACT
Hardwarelsoftware (HW-SW) partitioning is a key problem in the
codesign of embedded systems, studied extensively in the past. One
major open challenge for traditional partitioning approaches - as
we move to more complex and heterogeneous SOCs -is the lack
of efficient exploration of the large space of possible HWISW con-
figurations, coupled with the inability to efficiently scale up with
larger problem sizes. In this paper. we make two contributions for
HW-SW partitioning of applications represented as procedural call-
graphs: I) we prove that during partitioning, the execution time
metric for moving a vertex needs to be updated only for the imme-
diate neighbours of the vertex, rather than for all ancestors along
paths to the root vertex; consequently, we observe faster run-times
for move-based partitioning algorithms such as Simulated Anneal-
ing (SA), allowing call graphs with thousands of vertices to be pro-
cessed in less than a second, and 2) we devise a new cost function
for SA that allows frequent discovery of better partitioning solu-
tions by searching spaces overlooked by traditional SA cost func-
tions. We present experimental results on a very large design space,
where several thousand configurations are explored in minutes as
compared to several hours or days using a traditional SA formula-
tion. Furthermore. our approach is frequently able to locate better
design points with over I O % improvement in application execu-
tion time compared to the solutions generated by a Kernighan-Lin
partitioning algorithm starting with an all-SW panitioninp.
Categories and Subject Descriptors: B.6.3 [C.O]
General Terms: Algorithms
Keywords: HW-SW partitioning, dynamic cost function

1. INTRODUCTION
Partitioning is an important problem in all aspects of design.

HW-SW (hardware-software) partitioning, i.e. the decision to par-
tition an application onto hardware (HW) and software (SW) exe-
cution units, is possibly the most critical decision in HW-SW code-
sign. The effectiveness of a HW-SW design in terms of system exe-
cution time, area, power consumption, etc. are primarily influenced
by partitioning decisions. In this paper, we consider the problem
of minimizing execution time of an application for a system with
hard area constraints. We consider an application specified as a call

lThis work was partially supported by NSF Grants CCR-0203813
and ACI-0205712
Permission to make digital or hard copies of all or pan of this work for
personal or cla~smom use is granted without fee provided that copies are
not made or disuibuted for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on serves or to redistribute to lists, requires prior specific

graph DAG (directed acyclic graph) extracted from a sequential ap-
plication written in 'C' or any other procedural language, where the
graph vertices represent functions, and the graph edges represent
function calls or accesses between functions.

In this paper, we make two contributions to H W S W partitioning.
First we prove that for a callgraph representation, when a vertex is
moved to a different partition, it is only necessary to update the
execution time change metric 161 for its immediate parents and im-
mediate children instead of all ancestors along the path to the root.
This in general allows for a more efficient application of move-
based algorithms like simulated annealing (SA).

Second, we present a cost function for simulated annealing to
search regions of the solution space often not thoroughly explored
by traditional cost functions. This enables us to frequently generate
more efficient design points.

Our two contributions result in a vely fast simulated annealing
(SA) implementation that generates partitionings such that the ap-
plication execution times are often better by over 10% compared to
a KLFM (Kernighan-LinFiduccia-Matheyes) algorithm for HW-
SW partitioning for graphs ranging from 20 vertices to 1000 ver-
tices. Equally importantly, graphs with a thousand vertices are pro-
cessed in much less than a second.

2. RELATED WORK
HW-SW partitioning is an extensively studied "hard problem

with a plethora of approaches- dynamic programming [I I] , genetic
algorithms [3], greedy heuristics [IO], to name a few. Most of the
initial work, [I I] , [12], focussed on the problem of meeting tim-
ing constraints with a secondary goal of minimizing the amount
of hardware. Subsequently there has been a significant amount
of work on optimizing performance under area constraints, [l].
[Z], [6]. With the goal of searching a larger design space, tech-
niques such as simulated annealing (SA) have been applied to HW-
SW partitioning using fairly simple cost functions. While a lot
of initial work such as [121 was based exclusively on SA, recent
approaches commonly measure their quality against a SA imple-
mentation. For example, [I] compares simulated annealing with a
knowledge-based approach, and 121 compares SA with tabu search.

It is well-known that SA requires careful attention in formulating
a cost function that allows the search to "hill-climb over subopti-
mal solutions. However, much of the published work in HW-SW
partitioning have not studied in detail the SA cost functions that
permit a wider exploration of the search space. As an example, in
[Z], [7], the SA formulation considers only valid solutions satis-
fying constraints, thus restricting the ability of SA to "hill-climb"
over invalid solutions to reach a valid better solution.

The two previous pieces of work in HW-SW partitioning that are
most directly related to our work are [6] , [4]. Our model for HW-
SW partitioning is based on [6], a well-known adaptation of the

I22

http://banerjeeQics.uci.edu
http://duttQics.uci.edu

H W '
Figure 1: Target architec-
turn Figure 2: Simple callgraph
KL paradigm for HW-SW partitioning: our efforts in improving
the quality of the cost function are closely related to 141.

Our partitioning granularity is similar to [6], effectively that of
a loop-procedure call-graph: each partitioning object represents a
function and the DAG edges are annotated with callcounts. [6]
introduced the notion of execution time change metric for a DAG,
and updating the metric potentially by evaluation of ancestors along
the path to the root. The linear cost function in [6] ignores the effect
of HW area as long as the area constraint is satisfied.

[4] provides an in-depth discussion of cost functions and the no-
tion of improving the results obtained from a simple linear cost
function by dynamically changing the weights of the variables. We
differ from [4] in the following ways: [4] addresses the problem of
choosing a suitable granularity for HW-SW partitioning that min-
imizes area while meeting timing constraints; since we consider
the problem of minimizing execution time while satisfying HW
area constraints, the proposed cost function in [41 needs significant
adaptation for our problem. In [4], the dynamic weighting tech-
nique was applied towards the secondary objective of minimizing
HW area once the primary objective, the timing constraint. was al-
most satisfied. We however, apply a dynamic weighting factor to
our cost functions in various regions of the search space to better
guide the search. Last but not the least, since their primary focus
was on the granularity selection problem, there was no quantitative
comparison of their approach with other algorithms- we have com-
pared our approach to the KLFM approach with an extensive set of
test cases and demonstrated the effectiveness of our approach.
3. PROBLEM DESCRIPTION

We consider the problem of HW-SW partitioning of an applica-
tion specified as a callgraph extracted from a sequential program
written in C, or, any other procedural language. For the purpose
of illustrating the basic partitioning formulation, we assume a sim-
ple target architecture that contains one SW processor and one HW
unit connected by a system bus, as shown in Figure 1. I We assume
mutually exclusive operation of the two units, i.e. the two units may
not he computing concurrently. We also assume that the HW unit
does not have dynamic RTR (run-time reconfiguration) capability.

The problem considered in this paper is to partition the appli-
cation into HW and SW components such that the execution time
of the application is minimized while simultaneously satisfying the
hard area constraints of the HW unit. Essentially, given a software
program, we want to map as many functions as possible to the tixed
HW unit to improve program performance (thereby maximally uti-
lizing available HW resources in a computing platform).
Preliminaries

The input to the partitioning algorithm is a directed acyclic graph
(DAG) representing a call-graph, CG = (V, E). V is the set of graph
vertices and E the set of edges. Each partitioning object come-
sponding to a vertex vi € V is essentially a function that can be
mapped to HW or SW. Each edge ei, E E represents a call or an

'Of course, our formulation can be extended to more contemporary
SoC's containing multiple HW and SW components where we have
a tined area constraint and want to maximize performance

access to the callee function vj from the caller function vi. The
SW execution times and callcounts are obtained from profiling the
application on the SW processor. In this model, the HW execution
time and the HW area for the functions are estimated from synthesis
of the functions on the given HW unit. The simple model for HW
area estimates assumes that the area of a cluster of components can
be obtained by summing the individual HW areas. Communica-
tion time estimates are made by simply dividing the volume of data
transferred by the bus speed. Since the execution time model i s
sequential, bus contention is assumed to play an insignificant role.

Each edge et, has 2 weights (cci,, cti,). cci, represents the call
count, i.e. the number of times function Y . iq accessed by its parent
vi. ctij represents the HW-SW communication time, i.e. if vi is
mapped to SW and its child v, is mapped to HW (or vice-versa), ctij
represents the time taken to transfer data between the SW and the
HW unit for each call. (Note: we assume that vertices mapped onto
the same computing unit have negligible communication latency)

Each vertex vj has 3 weights (I:. I:. hi). t: is the execution time
of the function corresponding to vi on the SW unit (processor). $
and hi are the execution time, and, area requirement, respectively
for the function on the HW unit. Note that in this work we do
not consider compiler (synthesis) optimizations leading to multiple
HW implementations with different area and timing characteristics.

This denotes that in partitioning P, vertex "0 is mapped to SW, V I

is mapped to HW, " 2 is mapped to SW, etc. Two key attributes of
a partitioning are (T p , H p) . T p denotes the execution time of the
application under the partitioning P, HP denotes the aggregate area
of all components mapped to hardware under partitioning P.

4. EFFICIENT COMPUTATION OF EXE-

J.

A partitioning of the vertices can be represented as P = {f,, 4: +.....).

CUTION TIME CHANGE METRIC
Given a sequential execution paradigm and a call-graph specifi-

cation, the execution time of a vertex vi is computed as the sum of
its self-execution time and the execution time of its children. The
execution time for vj additionally includes HW-SW communication
time for each child of vi mapped to a different partition. Thus, if
T p denotes the execution time for vertex vi under a partitioning P,

T p = ti + zjLl (cci, * T j) + z j & (cci, rcti,)
where ti is either 1; or 1: depending on whether vi is currently

mapped to HW or SW in the partitioning P. Ci represents the set
of all children of vertex vi, e'' represents the set of all children
of vi mapped to a different partition. Note that if vg corresponds to
main in a 'C' program, T: equals the complete program execution
time when partitioning P specifies whether vertices are mapped to

For a partitioning P, the execution rime chunge metric A:, for a
vertex vi. is defined as the change in execution time when the vertex
vj is moved to a different partition. That is. A: denotes the change
in TU' when vertex vi is mapped to a different partition.

From the definition of the execution time change metric, it would
appear that when a vertex is moved to a different partition, the met-
ric values for all its ancestors would need to be updated. Indeed, in
previous work, 161, the change equations assumed it was necessary
to update ancestors all the way to the root. In the simple example
shown in Figure 2, the execution time of the program (same as the
execution time for vertex v g) obviously depends on the execution
time of its descendant "2. Let us assume all vertices were initially
in SW. If we move the vertex vz to HW, the execution time changes
due to HW-SW communication on the edges (v3 ,v2) , (q r v 2) and
change in execution time for vertex q. It would appear that any
execution time related metric for the vertices vg, vg, "4. would need

IC I Icd'ffl

HW M sw.

to be updated when this move is made. This, however, is not the
case, as proved in the following lemma:

Lemma: For any two vertices vr and vy, if a vertex v, is
moved to a different partition, Ay needs to be updated only if
there is an edge (x , y) or, (y ,x) . This update requires changing
exactly one term in A>,, i.e this update can be done in O(1) time
per edge.

PROOF. We define the aggregate call Counf, CCi for a vertex vi
in the following recursive manner: CCi = cp, (ccji * CCj). Pi
represents the set of all parent vertices (all functions it is called
from) for the vertex vi. CCo, i.e the aggregate call caunt for the
root vertex, is 1.

CCi represents the exact number of times the function corre-
sponding to vertex vj is called along all possible paths from the
root. Now, if we recursively expand T:, an unrolled representation
for T: is:

T; = Z!EL(cci * t i)+C(i , j j E "(s; cc, * = t i j) .

Sp. is the Kronecker delta function defined for edge (i , j) in the
partxioning P - it takes a value of I if the vertex vi and its child
vertex v j are mapped to different partitions, 0 otherwise. The first
expression has exactly one term per vertex and the second expres-
sion has exactly one term per edge. If we now evaluate T,'.. the
new execution time when vertex v, is moved to generate the new
partitioning Px,

TP' _ -C~~;"J(cci * t i) +t$ *.cc~+C(i,Jl~[~-~)(s; * cc, *
C t i j) + X (i . J) *CCi*Cfij)

where X is the set of all edges adjacent to vertex v,, induding its
immediate parents and immediate children. The Kronecker delta
values can change only for edges adjacent to v,. We can now eval-
uate A: = T,'. - T: corresponding to the change in execution time
when vertex vr is moved.

A' I - - CC, t (6 - tx)+c'i5J) '((S: - s.) *CCi * cri,)

We can similarly compute A; for any other vertex vy as
q = c c y * (r ~ - f y) + C l i , J) ~ ~ ((~ ~ -~;)*cc,tct~~) - E q n (~)

Next, we evaluate.the execution time T,". corresponding 10 the
new partitioning when vertex v, is moved, followed by vertex vy
being moved.

P T,". = C!l,"'-"y'(CCi * t i) + f? * CC, + ry' '* CC, +
c l j , j j c (E - X - V (g ; * cc, * cl,,)+ ~ l ~ ~ i ~ ~ ~ X - l ~ ~ ~ l l (~ p ~ * cc, *

a j) +

Zl i . j jEy(s : * C C , * ~ ~ , ~)
where [x ,y] denotes either (x , y) or (y , x) . Note that from our

n u s , we can compute A: = T,". - T,'. as
problem definition we can not have both (x , y) , and, (y , x) .

8

A$ = ~ c , ~ (t ~ - t ?) - ((i , J j = I x , y l) (S ! T ~ C C , ~ ~ ~ , ~) - ' I

C l i , j) ~ (~ - l x . y l) (~ . ~ ~ ~ ~ * ~ ~ ~ ~) + c (: . j j ~ ~ (j j p , *ccjeCtjj)
' I ' I

= cc, * (t? - t y) + c (i , j) ~ [y - l . J . I) ((s P ~ ' I -s;) *cc, * c t i j) +

[~ i , J) = [x J . l) ((6 ~ - j j :)*CCj*ct i j) . Eqn (B)
6i, depends only on whether vertices vi and v j are in the same

partition, or in different partitions. That is, S: = fip, if (i, j) +
[x ,y] . So, comparing Equations (A) and (B), we have

~ p - q = l (i , J) = [h ~ l j ((SF -sP,)-(~~-sP.))*cc,*~~, ' I ' I ' I

Thus we have proved that when vertex v, is moved to a different
partition, Ay needs to tie updated only if there is an edge [x ,y] . Also,
the update involves changing exactly one term in Ay.

Our experimental results will show that this result allows us to
have very fast run-times for move-based algorithms like SA.

. .
U

I 24

5. SIMULATED ANNEALING
- _ _ _ _ _ _ _ _ _ - _ _ _ _ _ _ - -

Algorithm SA
while (NOTl?QUlLlBRIUM)

For i = 1 fo I, /I iterations at current temperature
P =random perturbation of the current configuration, P
COSTA = COSTfP') - COSTfP)
if COST^ < 0)
else,

endfor
UPDATE T () (from annealing schedule)
EVALUATEl?QUILlBRlUM.CONDITION()

P = P
generate random number x E [0,1]

if (x < e - C O W ~) p = P

endwhile
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
The above SA algorithm represents a typical formulation of sim-

ulated annealing for problems in combinatorial optimization, as ini-
tially proposed in [15]. The SA algorithm essentially tries to find an
optimal solution to a "hard" problem such as partitioning, by con-
ceptually representing the problem as a physical system with a huge
number of particles at an initial temperature T. The system is ran-
domly perturbed and the temperature is successively decremented
allowing the system to reach statistical equilibrium at each temper-
ature step: a state of minimal energy of the system corresponds to
an optimal solution to the "hard" problem. Thus, key parameters in
any formulation are the initial temperature T. the cooling (anneal-
ing) schedule mandating how the temperature is decremented, and
the number of iterations at each temperature step.

In HW-SW partitioning, perturbation is commonly defined as a
move of a single vertex from HW to SW and vice versa, though ex-
periments have been conducted with perturbations involving mul-
tiple moves [71. A typical cost function is a linear combination of
normalized metrics [I] , [4], [2]. For our problem, the two metrics
we need to consider are the execution time and the HW area.

For a SA approach to HW-SW partitioning, execution time is
primarily driven by the computation cost of the cost function. A
cost of O (E) to compute the execution time of a partitioning by a
traversal of the call-graph for every new configuration is too expen-
sive for graphs with 100s 10 1000's of vertices. For our problem,
we can simply use the execution time change metric defined earlier
to efficiently update the execution time for a new partitioning by
updating only the immediate neighbours of a vertex. Since the av-
erage indegree and outdegree of a call graph is expected to be a low
number, the average cost of a move is very low and enables the SA
algorithm to do a very rapid evaluation of the search space. Nota-
tionally, for a partitioning P with attributes (T p , H P) , a HW to SW
move of vertex vi generates a new partitioning PI with attributes
(TP+A~,HP-hi),andsimilarlyforaSW toHWmove.
5.1 Cost function for simulated annealing

Often, a statically weighted linear combination of metrics is used
as a cost function for SA algorithms in an attempt to overcome
its well-known limitations in handling multiobjective problems. In
this section we first provide the intuition for developing cost func-
tions that explore points often not considered in traditional cost
functions, and then describe the cost function.

SA uses randomization to overcome local minima by accepting
suboptimal moves with some probability: our goal is to guide the
algorithm towards potentially more interesting design points by ex-
plicitly forcing the algorithm to accept apparently bad moves when
far away from the objective. Simultaneously, we force the algo-
rithm to probabilistically reject some apparently good moves that
would always be accepted by most heuristics. As an example, when

Figure 3: Solution space Figure 4 Neighbourhood move

we are far away from our optimization goal, we would prefer not to
always accept a move that improves execution time only slightly at
the cost of a significant amount of hardware area.

Given our view of SA as a sequence of moves each of which is
blindly accepted, or probabilistically rejected depending upon its
degree of suboptimality, we define a cost function on the param-
eters that change for a given move. i.e. execution time, and HW
area. The change in execution time for a move, AT. is the same as
execurion time change metric for the moved vertex. The chdnge in
area, AA, is positive, hi for a SW-HW move, and negative, -hi for a
HW-SW move of vertex v i .

In Figure 3, each possible partitioning P is represented by a point
in the two-dimensional plane with x and y co-ordinates. The x-axis
represents the execution time corresponding to the given panition-
ing, while the y-axis represents the aggregate HW area. The vertical
lines T,i, and zna represent the execution times for an all HW and
an all SW solution respectively. The horizontal line A, represents
the area constraint. To solve our problem of minimizing execution
time under a hard area constraint, we effectively need to search for
a point as close as possible to the upper left corner of the hounded
rectangular region A.

A move of a single component from SW to HW i n partitioning P
is expected to lead to a new panitioning with improved (less) exe-
cution time and more HW area, such as PI in Figure 4. Similarly. Pz
corresponds to a HW to SW move with less HW area. More gener-
ally, when a single component in partitioning Pis moved between
panitions, the new partitioning Pj lies in one of the four quadrants
centred at P. A partitioning PI with improved execution time and
additional HW area lies in the quadrant (-f ,+h), represented in
Figure 4 as (-,+). Similarly, a partitioning Pz with improved ex-
ecution time and reduced HW area lies in the quadrant (4 - h) .
represented as (-,-),and so on forpanitionings 4, P4.

We next consider the evaluation of a cost function (A * AT + B *
AA) at the point P, corresponding to a random move generated by
the SA algorithm. A and B are weights that include the normal-
ization factors required to be able to combine the two cost function
components which are in completely different units. This cos1 func-
tion is a simple straight line through P splitting the region around
P into 2 equal parts. In traditional cost functions like [6] , where
the HW area component of the cost function is ignored as long as
the area constraint is satisfied, essentially every random move that
improves the execution time component of the cost function is ac-
cepted with a probability of I . An example of such moves are Pi,
Pz inFigure4,i.eallmoveslyinginquadrants (- t , + h) , (-r,-h),
represented in the figure as (-+), (--).

If we now specifically consider a partitioning P in Figure 3 such
that few components have been mapped io HW, and the execution
time is hence expected to be closer to the SW execution time, our
goal is to bias the move acceptance such that:

(a) we provide additional weightage to some moves like P, in

Figure 5: Cost functions

Figure 5 , that cause the execution time to deteriorate slightly but in
exchange free up a large amount of HW area. Such moves would
be prohabilistically rejected by traditional cost functions that ignore
the HW area component, but we force their acceptance by explic-
itly introducing a cost function (A * A T + B * AA), A >> B in the
quadrant (+r , -h) .

(b) we reduce weightage on some moves like Pv in Figure 5 , that
improve execution time slightly but consume an additional large
amount of HW area. This is based on a similar reasoning of en-
abling the cost function to explore more combinatorial possibilities.

(c) we reduce weightage on some moves like Pz in Figure 5 that
improve the execution time slightly but free up a large amount of
HW area. We are now actually attempting to guide the search away
from making moves that do not appear to be headed towards our
desired solution space. Intuitively, for a panitioning where there
are relatively few HW components, the HW-SW communication
cost can potentially play a dominant role. For moves like Pr, free-
ing up a large amount of HW could potentially result in a slight
improvement in execution time due to significant reduction in HW-
SW communication. Blindly accepting such moves translates to
attempting to reduce communication cost between some vertex v,
mapped to HW and its neighbours in SW by moving hack v, to SW.
When we are far from our desired solution space, we would instead
prefer to encourage the algorithm to reduce communication cost by
adding more of its neighbours to HW.

We next consider the notion of dynamically weighting the com-
ponents of the cost function as suggested in [41. This is a powerful
technique which essentially changes the slope of the line through
P, thus dynamically changing the search region. In [4], this tech-
nique was applied towards the secondary objective of minimizing
HW area once the primary objective, the timing constraint was al-
most satisfied. We however, apply a dynamic weighting factor to
our cost functions in various regions in an attempt to better guide
the search. Conceptually we dynamically weight the time compo-
nent with the distance from the boundary in our attempt to guide
the search more towards the top left corner of the bounded region
A in Figure 3.

Among other key issues considered in our cost function are the
impact of boundary violations, i.e when a move leads us to a pani-
tioning with HW area greater than the constraint. We penalize all
such moves with a factor proponional IO the extent of the boundary
violation. We can clearly achieve this with a high weightage on
the area component , i.e., a function (A * AT + B * (Areane%, -Ac)) ,
where B >>> A. Similarly when a move leads from an invalid
partitioning to a valid partitioning, we reward it with a factor pro-
portional to the extent that it is inside the boundary.

Another important aspect of our cost function is the notion of
a threshold. When we are very close to the boundary, we need
a cost function that has only a slight bias towards the component
representing execution time. In our cost function, the time compo-

125

nent is dynamically weighted by the distance from the boundary-
we have observed experimentally that close to the boundary. desir-
able weights for the time component in this region are even lower
than what our cost function provides. Thus, we needed to add the
notion of a threshold region very close to the boundary where we
explicitly assign a lower weightage to the time component of the
cost function.

Based on the above discussion, our cost function is algorithmi-
cally described as follows:
$(current partiritioning is a valid solution)

$(move causes boundary violorion)
Significant penalry proportional to area violorion (i)

else $(current partitioning is v e q near ro boundary)
Slightly reduced weightage on time (as compared to (iii))

else
$(move in quadrant -)

else
(A 1 * A ~ + B ~ * A ~) , " k e r e A 1 > > E 1 (iii)

(A ~ * A ~ + B z * A A) , (iv)
else // (current pamririoning lies outside bounday)

a mirror image of the above ser of rules.
In Equations (iii) and (iv), the terms A I and A? are dynamically

weighted by the distance from the boundary. The HW area com-
ponent of the cost function is normalized with respect to the area-
Constraint. A more detailed description of the actual values imple-
menting rules (i), (iii), etc, are in [IS].
5.2 Key parameters in SA

In order to obtain quality results, we tuned the algorithm SA by
using the following parameter settings. For decrementing the tem-
perature, we chose the popular geometric cooling schedule, where
the new.temperature is given by T,,, = a* T . a is a constant that
typically varies between 0.9 - 0.99. After a lot of experiments, we
fixed a at 0.96.

The stopping criterion is an important parameter, often formu-
lated as the maximum number of moves that did not produce any
improvement in the solution. In previous work, this has typically
been a fixed number. We observed that this criterion has a strong
correlation with problem size and hence, we scale the criterion from
5000 moves without improvement for graphs with SO vertices, to
15000 moves without improvement for graphs with a 1000 vertices.

Our experiments indicated that there was only a weak correlation
between the initial temperature and the problem size. So, we keot
the initial temperature T fixed at 5000.

Another key parameter that we have often found missing in pre-
vious work on HW-SW partitioning is the inner loop in Algorirhm
SA where there are multiple iterations at each temperature. We have
observed experimentally that the solution quality degrades when
there is a single iteration at each temperature step as compared to
the approach of applying multiple iterations at each temperature
step.
6. EXPERIMENTS

As shown in Figure 6, we explored a very large space of possi-
ble designs by generating graphs which varied the following set of
parameters: (I) varying indegree and outdegree (2) widely varying
number of vertices (3) varying CCRs (computation-to-communication
ratio). (4) varying area constraints.

We augmented the parameterizable graph generator TGFF 1131
to generate the graphs used in our experiments. An example of an
augmentation was one that enahled TGFF to generate HW execu-
tion times for vertices such that the HW execution time of a vertex
was faster than the SW execution time by a number between 3 and
8 times.

Let S = {20,50, 100,2001500~1000} denote the range of graph

Figure 6 Set of experiments
sizes generated where size corresponds approximately to the num-
her of vertices in the graph. As an example, for a graph size SO,
TGFF generates a graph with between 48 to 52 vertices. We chose
S to observe how our algorithm worked on a large range of graph
sizes. Le tCR= {0.1,0.3,0.5:0.7} denotethe set of C C R s
(communication-to-computation ratio). The notion of CCR is very
important in partitioning and scheduling algorithms that consider
communication between taskslfunctions. A CCR of 0.1 means
that on an average, communication between taskslfunctions in a
call-graphhask graph requires IIlOth the execution times of the
functionsltasks in the graph. As CCR increases, communication
starts playing a more important role in coarse-grain partitioning and
scheduling algorithms.

We generated data for over 12000 individual runs of the SA with
the following configurations from Figure 6.
Step 1 The maximum indegree and outdegree of a vertex were
set to 4 each, which are reasonably representative of realistic call-
graphs. Corresponding to these fixed parameters, we generated a
set of graphs with the following characteristics. Each run of SA
chose a graph size from S = {20,50,100,200,500~ 1000); for each
graph size wechose CCR from CR = {0.1,0.3,0.5,0.7} Thus. we
effectively generated a set of graphs /SI X ICRI. Note that in the
tables that follow, graphs with size 50 are denoted as v50, graphs
with size 100 are denoted as v100, etc.
Step 2 For each of the graphs generated in Step 1. we varied the
area constraint A , as a percentage of the aggregate area needed to
map all the vertices to HW. On one extreme, we set A, such that
very few partitioning objects would fit into HW, while at the other
extreme, a significant proportion of the objects would fit into HW.
Step 3 We repeated the above two steps with a maximum indegree
and outdegree of (i) 4 and LO (ii) 2 and 5 (iii) 5 and 7.

Thus, the experimental data presented represents information col-
lected from over 12000 experiments.

To measure the quality of results, we simply record the program
execution times computed by the SA algorithm with our new cost
function, and the KLFM algorithm as in [6]. In prior work, how-
ever, experiments to measure the quality of a partitioning algorithm
have often been formulated by forcing constraint violations and at-
tempting to integrate the degree of violations into some unitless
number, as in L61, [I] .

For a given design configuration, if TM is the execution time of
the panitioned application computed by the KLFM algorithm, and
T,, is the execution time of the partitioned application computed
by the SA algorithm, our quality measure is the performance dif-
ference given by: (Tkl - Tso)/Tkl * 100
Thus, a positive number, say, 5%. implies that the KLFM algorithm
computed an execution time better than SA by 5%. while a nega-

126

Graph BESTDEV
type (%I

22.9% 6.7% 5.75% .OX 05 1 %I 1 118.2% I 5.7% I 15.47% I .I I :07 I
WORSTDEV AVG SA KFM

(%I (%) rt rt

"200
v500
vl000

in a SA implementation that generates partitionings such that the
execution times are often better by 10 % over a KLFM algorithm
for graphs ranging from 20 vertices to 1000 vertices. Equally im-
portantly, the algorithm execution times are very fast- graphs with
1000 vertices are processed in less than half a second. We believe
that such a fast SA formulation makes it feasible to fine-tune the
function further in a real design environment to generate partition-
ing solutions with a quality significantly better than that obtained
from traditional KLFM implementations.

One important limitation of this work is a simple additive HW
area estimation model that does not consider resource sharing- this
could potentially be overcome in a future implementation with an
approach like [XI.

In the future, we plan to extend these concepts to systems where
HW and SW execute concurrently, i.e. consider scheduling issues
as part of the problem formulation. Also, based on our learning
experience of individually tuning a lot of different parameters in
SA, we would like to extend the cost function concepts developed

-13.9% 4.3% -3.74% .I9 .I1
-16% 6.8% -4.53% .25 .48

-13.7% 6.4% -4.17% .36 1.6

here to algorithms with fewer tunable parameters.
8. REFERENCES

[I] M L Vallejo, J C Lopez, "On <he hardware-software panitioning prohlcm:
System Modeling and pmitioning lechniques", ACM TODAES. V-8.2003

121 T Wianglong. P Cheung, w Luk. "Comparing three heunstic search methods
for functional panitioning in hardwarc-software codesign". Iml Dciign
AuromaLion far Embedded Syaremi. V-6. 2002

[3] K Ben Chehida. M Auguin, "HWISW partitioning approach for rcconfigurvhle
System design", CASES 2002

141 J Henkel, R Erns,. "An approach Io aulomated hadwadsoftware purtilioning
using a flexible grvnulaniy that is driven by high-level estimalion Techniques".
1EEETrans.on VLSI, v~9. 2001

151 J Henkel. R Ernst. "A hardwadsoftware panitioner using r dynamically
determined granulanfy", DAC 1997

L61 F vahid. T D Le. "Extending the Kernighan-Lin heuristic for Hardware and
Sofrwarc functional purtiiioning", Jml Design Automation for Embedded
Svsrems. V-2. 1997

171 P Eles. 7. Peng. K Kuchinski. Doh& "System Levcl HardwareiSofcwKe
Panitioning based on simulated annealing and Tabu Search, Jml Design
Automation for Embcddcd Syiiemr. V-2. 1997

181 F Vahid. D Gajski. "Incremental hdware estimation during
hardwarelsoftware functional pmitioning". IEEE Trans. VLSI, V-3. 1995

191 F Vahid, J Gong. D Gajski. "A binary-consaiinr search algonfhm for
minimizing hardw- during hardwarc-software pmitioning". EDAC 1994

1101 A Kdavade. E Lee. "A global cnticalityLoca1 Phase Dnven rlgonthm for the
Constrained HardwardSoftwvre panilioning problem". CODES 1994

I 1 11 R Ernsl. J Hcnkel. T Benner, "Hardware-soflware cosynthesis for
micmconlmllco". IEEE Design and TesLV-IO. Dec 1993

1121 R Gupra. De Micheli, "System-level synthesis using re-progammahle
components", EDAC 92

I131 R P Dick, D L Rhodes, W Wolf. "TGW: lask graphs for free". CODES 1998
I141 D G Luenherger. "Linearand non-Linear programming". Addison-Wesley.
[IS] S Kirkpactick. C D Celaft, M P Vechi. "Optimization by simulated annealing".

science. v-220. 1983
1161 C M Fiduccia. R M Mattheyes. "A Linear-time heuristic for improving

1171 B Kemighan, S Lin. "An efficient heunrtic pmcedurc far partitioning graphs",

1181 S Banejee, N Duct. "Vcry fast simulated annealing for W - S W pmitioning",

ncfuork pmilions". DAC. 1982

The Bell System Technical Journal. V-29.1970

Technical Repon CECS~TR-M.17. UC. lrvine.

127

